Synthesis and Structural Properties Characterization of HA/Alumina and HA/MgO Nanocomposite for Biomedical Applications
ثبت نشده
چکیده
HAAlumina nanocomposite is biocompatible and has desirable mechanical and physical properties. Less cost, simple synthesis method, and fast production are the added advantages of this nanocomposite. Thus HA coatings on the surface of alumina substrates are used to combine excellent bioactivity of HA with superior mechanical properties of the alumina substrates. One of the elements associated with biological apatite is magnesium [1]. Mg incorporation into HAP stimulates osteoblast proliferation. Mg acts similar to a growth factor during the early stages of osteogenesis and promotes bone formation. Typical concentrations of carbonate and Mg ions in human bone are 5.8 and 0.55 wt %, respectively. Although the extent of these elemental substitutions is minimal, they are important for biological activity and interaction between bone mineral and calcium–phosphatebased implant materials by influencing crystal growth, dissolution rate, solubility, surface chemistry and charge, morphology, and the mechanical properties. By substitution of a smaller Mg ion or Al ion for a larger Ca ion, additional structural changes may be required to prevent destabilization/decomposition of the structure during heat treatment process. This can be achieved by co-substitution of a second ion, to the HA structure [2]. Thus, MgO and Alumina nanoparticles dispersed within polymer composites have the potential to enhance bone tissue formation with limited adverse degradation reactions. Taking advantage of these prior studies, the objective of the present in vitro study was to characterize MgO and Alumina nanoparticles as additive materials for orthopedic tissue engineering applications, especially when used in combination with HA nanoparticles [3]. Materials
منابع مشابه
Effect of the Synthesis Parameters on the Properties of Biphasic Ca(OH) -HA Nanopowders for Tissue Engineering Applications
Nanocrystalline hydroxyapatite was precipitated from calcium hydroxide and phosphoric acid. Effects of precipitation temperature and different calcium to phosphate ratios (Ca/P) on the obtained powders were investigated. Characteriza-tion of the powders was performed using XRD and FTIR spectra, scanning electron microscopy, and transmission electron microscopy. Increase in precipitation t...
متن کاملHydroxyapatite-Hardystonite nanocomposite scaffolds prepared by the replacing the polyurethane polymeric sponge technique for tissue engineering applications
Objective (s): Silicate bioceramics containing Zn and Ca like hardystonite (Hr) with chemical formula Ca2ZnSi2O7 has attracted the attention of researchers in biomedical field due to its remarkable biological and mechanical properties. The new generation of bioceramics can applied in bone tissue engineering to substitute with infected bone. However, these zirconium-silicate bioceramics have pro...
متن کاملSynthesis, characterization and biocompatibility evaluation of hydroxyapatite - gelatin polyLactic acid ternary nanocomposite
Objective(s): The current study reports the production and biocompatibility evaluation of a ternary nanocomposite consisting of HA, PLA, and gelatin for biomedical application.Materials and Methods: Hydroxyapatite nanopowder (HA: Ca10(PO4)6(OH)2) was produced by burning the bovine cortical bone within the temperature range of 350-450 oC followed by heating in an oven at 800. Synthesis of the te...
متن کاملBiodegradable Mg/HA/TiO2 Nanocomposites Coated with MgO and Si/MgO for Orthopedic Applications: A Study on the Corrosion, Surface Characterization, and Biocompatability
In the field of orthopedics, magnesium (Mg) and magnesium-based composites as biodegradable materials have attracted fundamental research. However, the medical applications of magnesium implants have been restricted owing to their poor corrosion resistance, especially in the physiological environment. To improve the corrosion resistance of Mg/HA/TiO2 nanocomposites, monolayer MgO and double-lay...
متن کاملTi-6Al-4V Synthesized by Mechanical Alloy Method and Mechanical and Bioactivity Properties of Ti-6Al-4V/HA-Clay Nano composite
Nowadays, titanium-based alloys are among the most attractive metallic materials for biomedical applications (as implants) due to their non-biodegradability, low density, good mechanical properties as well as their good biocompatibility. Hydroxyapatite (Ca10 (PO4)6(OH)2, HA) has been widely used for biomedical applications due to its bioactive, biocompatible and osteoconductive properties. Firs...
متن کامل